资源类型

期刊论文 32

会议视频 1

年份

2023 3

2022 7

2021 6

2019 3

2017 2

2016 1

2015 1

2014 1

2013 1

2012 1

2011 1

2007 1

2004 1

2003 1

2000 1

展开 ︾

关键词

乳化炸药 2

油水分离 2

TA乳粉 1

上游操作 1

严格建模 1

乳液 1

乳液共聚合 1

乳状液 1

分子间力和表面力 1

危险源 1

固化反应模型 1

地下结构接缝 1

废水处理 1

强度增长 1

挠度 1

时温条件 1

植物生长调节剂 1

氟原子 1

水处理 1

展开 ︾

检索范围:

排序: 展示方式:

A free-standing superhydrophobic film for highly efficient removal of water from turbine oil

Fan Shu, Meng Wang, Jinbo Pang, Ping Yu

《化学科学与工程前沿(英文)》 2019年 第13卷 第2期   页码 393-399 doi: 10.1007/s11705-018-1754-3

摘要: A free-standing superhydrophobic film is prepared by sequentially dip-coating a commercially available filter paper with nano SiO suspension, epoxy emulsion, and octyltrimethoxysilane solution. A surface with micro- or nano-roughness is formed because SiO nanoparticles are uniformly and firmly adhered on the backbone of the filter paper by the cured epoxy resin. Furthermore, the surface energy is significantly reduced because of introducing octytrimethoxysilane. Such a surface structure makes the prepared film a superhydrophobic material. Due to its free-standing nature, this superhydrophobic film can be used to remove water from turbine oil by filtration. The efficiency of water removal is high (up to 94.1%), and the filtration process is driven solely by gravity without extra energy consumption. Because of the facile fabrication process and the high efficiency of water removal, this free-standing superhydrophobic film may find application in power industry.

关键词: superhydrophobicity     nanoparticles     dip coating     epoxy emulsion     turbine oil    

Molybdenum disulfide@nickel phyllosilicate hybrid for improving the flame retardancy and wear resistance of epoxy

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 2114-2126 doi: 10.1007/s11705-023-2357-1

摘要: In this study, nickel phyllosilicate was synthesized based on molybdenum disulfide (MoS2@NiPS) by the sol-gel method, and then MoS2@NiPS was used to prepare epoxy composites. The thermal stability, flame retardancy, and frictional performances of epoxy composites were studied. With the addition of 3 wt% MoS2@NiPS, the epoxy composite increased the limiting oxygen index from 23.8% to 26.1% and reduced the vertical burning time from 166 s for epoxy resin to 35 s. The residual char of the epoxy composite increased from 11.8 to 20.2 wt%. MoS2@NiPS promoted the graphitization of the residual char, and facilitated the formation of a dense and continuous char layer, thereby improving the fire safety of epoxy resin. The epoxy composite with 3 wt% MoS2@NiPS had excellent wear resistance property with a wear rate of 2.19 × 10−5 mm3·N–1·m–1, which was 68.8% lower than that of epoxy resin. This study presented a practical approach to improve the frictional and fire resistance of epoxy composites.

关键词: molybdenum disulfide     nickel phyllosilicate     epoxy resin     flame retardancy    

Bisphenol-A epoxy resin reinforced and toughened by hyperbranched epoxy resin

ZHANG Daohong, JIA Demin, HUANG Xianbo

《化学科学与工程前沿(英文)》 2007年 第1卷 第4期   页码 349-354 doi: 10.1007/s11705-007-0063-z

摘要: The study on toughening and reinforcing of bisphenol-A epoxy resin is one of important developmental direction in the field. This paper reports a one-pot synthesis of aromatic polyester hyperbranched epoxy resin HTDE-2, an effect of HTDE-2 content on the mechanical and thermal performance of the bisphenol-A (E51)/HTDE-2 hybrid resin in detail. Fourier transform infrared (FT-IR) spectrometer, scanning electronic microscopy (SEM), differential scanning calo ri metry (DSC), thermogravimetric analysis (TGA), dynamic mechanical thermal analysis (DMA) and molecular simula tion technology are used to study the structure of HTDE-2, performance and toughening and reinforcing mechanism of the HTDE-2/E51 hybrid resin. It has been shown that the content of HTDE-2 has an important effect on the performance of the hybrid resin, and the performance of the HTDE-2/E51 blends has maximum with the increase in HTDE-2 content. The impact strength and fracture toughness of the hybrid resin with 9 wt-% HTDE-2 are almost 3.088 and 1.749 times of E51 performance respectively, furthermore, the tensile and flexural strength can also be enhanced about 20.7% and 14.2%, respectively. The glass transition temperature and thermal degradation temperature, however, are found to decrease to some extent.

关键词: thermogravimetric analysis     developmental direction     flexural strength     HTDE-2/E51     technology    

乳化炸药结构与稳定性关系的研究

汪旭光,申英锋

《中国工程科学》 2000年 第2卷 第2期   页码 24-29

摘要:

文章从结构角度出发,系统分析了乳化炸药乳胶体稳定性的各个因素,并得出了零渗透压体系在结构上最为稳定的结论。实验测定表明,几种较稳定的乳胶配方均接近为零渗透压体系。

关键词: 乳化炸药     结构     稳定性    

of polyaniline nanorods to simultaneously enhance the mechanical properties and wear resistance of epoxy

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1254-1266 doi: 10.1007/s11705-023-2297-3

摘要: To enhance the mechanical properties and wear resistance of epoxy resin, polyaniline nanorods were first synthesized using a facile route, and then introduced into the epoxy matrix to yield composites via solution mixing. Several measurements were conducted to investigate the phase structures and compositions of polyaniline nanorods, and their positive influences on the mechanical and tribological properties of epoxy resin were also characterized. The results confirmed that the as-synthesized polyaniline exhibited representative rod-like morphologies and dispersed well in the epoxy matrix, leading to significant enhancements in the tensile strength and elastic modulus of epoxy composites. The highest values of 110.33 MPa and 2.04 GPa were obtained by adding 5%–7% polyaniline nanorods, which were 43% and 62% higher than the pure sample, respectively. The wear rate was increased first and then decreased along with polyaniline nanorods, presenting the lowest value of 2.12 × 10−5 mm3·Nm–1 by adding 5% filler, which was markedly reduced by ca. 70% compared to the control sample. Finally, the possible wear mechanism was proposed and discussed in detail. This study tried to broaden the applications of polyaniline nanorods in the field of tribology.

关键词: epoxy resin     polyaniline nanorods     mechanical property     tribological performance     wear mechanism    

Self-extinguishing and transparent epoxy resin modified by a phosphine oxide-containing bio-based derivative

Gang Tang, Ruiqing Zhao, Dan Deng, Yadong Yang, Depeng Chen, Bing Zhang, Xinliang Liu, Xiuyu Liu

《化学科学与工程前沿(英文)》 2021年 第15卷 第5期   页码 1269-1280 doi: 10.1007/s11705-021-2042-1

摘要: A phosphine oxide-containing bio-based curing agent was synthesized by addition reaction between furan derivatives and diphenylphosphine oxide. The molecular structure of the as-prepared bio-based curing agent was confirmed by Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. Dynamic mechanical analysis results indicated that with the increase of bio-based curing agent content, the glass transition temperature of epoxy/bio-based curing agent composites decreased, which was related to the steric effect of diphenylphosphine oxide species that possibly hinder the curing reaction as well as the reduction in the cross-linking density by mono-functional N H. By the addition of 7.5 wt-% bio-based curing agent, the resulting epoxy composite achieved UL-94 V-0 rating, in addition to limiting oxygen index of 32.0 vol-%. With the increase of content for the bio-based curing agent, the peak of heat release rate and total heat release of the composites gradually decreased. The bio-based curing agent promoted the carbonization of the epoxy matrix, leading to higher char yield with good thermal resistance. The high-quality char layer served as an effective barrier to retard the diffusion of decomposition volatiles and oxygen between molten polymers and the flame. This study provides a renewable strategy for fabricating flame retardant and transparent epoxy thermoset.

关键词: epoxy resin     flame retardant     furan derivative     diphenylphosphine oxide    

nanohybrid CNT@Ni-PS and its applications in enhancing the tribological, curing and thermal properties of epoxy

《化学科学与工程前沿(英文)》 2022年 第16卷 第10期   页码 1530-1530 doi: 10.1007/s11705-022-2240-5

nickel phyllosilicate toward efficiently enhanced mechanical, flammable and tribological properties of epoxy

《化学科学与工程前沿(英文)》 2022年 第16卷 第10期   页码 1493-1504 doi: 10.1007/s11705-022-2168-9

摘要: Metal−organic framework-derived materials have attracted significant attention in the applications of functional materials. In this work, the rod-like nickel-based metal−organic frameworks were first synthesized and subsequently employed as the hard templates and nickel sources to prepare the whisker-shaped nickel phyllosilicate using a facile hydrothermal technology. Then, the nickel phyllosilicate whiskers were evaluated to enhance the mechanical, thermal, flammable, and tribological properties of epoxy resin. The results show that adequate nickel phyllosilicate whiskers can disperse well in the matrix, improving the tensile strength and elastic modulus by 13.6% and 56.4%, respectively. Although the addition of nickel phyllosilicate whiskers could not obtain any UL-94 ratings, it enhanced the difficulty in burning the resulted epoxy resin nanocomposites and considerably enhanced thermal stabilities. Additionally, it was demonstrated that such nickel phyllosilicate whiskers preferred to improve the wear resistance instead of the antifriction feature. Moreover, the wear rate of epoxy resin nanocomposites was reduced significantly by 80% for pure epoxy resin by adding 1 phr whiskers. The as-prepared nickel phyllosilicate whiskers proved to be promising reinforcements in preparing of high-performance epoxy resin nanocomposites.

关键词: metal−organic framework     nickel phyllosilicate     whisker     epoxy resin     mechanical response     tribological performance     flammable property    

synthesis of flower-like nickel phyllosilicates and its application as high-performance reinforcements in epoxy

《化学科学与工程前沿(英文)》 2022年 第16卷 第4期   页码 484-497 doi: 10.1007/s11705-021-2074-6

摘要: The nanocomposites of flower-like nickel phyllosilicate particles incorporated into epoxy resin were fabricated via an in-situ mixing process. The flower-like nickel phyllosilicate particles were firstly synthesized using a mild self-sacrificial templating method, and the morphology and lamellar structure were examined carefully. Several properties of mechanical, thermal and tribological responses of epoxy nanocomposites were performed. It was demonstrated that adequate flower-like nickel phyllosilicate particles dispersed well in the matrix, and the nanocomposites displayed enhanced tensile strength and elastic modulus but decreased elongation at break as expected. In addition, friction coefficient and wear rate were increased first and then decreased along with the particle content, and showed the lowest values at a mass fraction of 5%. Nevertheless, the incorporated flower-like nickel phyllosilicate particles resulted in the continuously increasing thermal stability of epoxy resin (EP) nanocomposites. This study revealed the giant potential of flower-like particles in preparing high-quality EP nanocomposites.

关键词: nickel phyllosilicate     flow-like structure     mechanical property     thermal stability     tribological performance    

Importance of emulsions in crystallization—applications for fat crystallization

Sandra PETERSEN, K. CHALEEPA, Joachim ULRICH

《化学科学与工程前沿(英文)》 2013年 第7卷 第1期   页码 43-48 doi: 10.1007/s11705-013-1309-6

摘要: Emulsions and crystallization are two independent research topics which normally do not overlap although a combination of the two could be applicable to many areas. Here, the importance of emulsions in the field of fat crystallization is described. Three applications with industrial relevance were chosen for investigation: fat fractionation, the solidification of phase change materials and solid lipid nanoparticles. For fat fractionation and phase change materials, emulsification can be applied as a tool to improve the fat crystallization process, and thus the product quality of the crystallized fat. Furthermore, the use of emulsification creates new application fields such as solid lipid nanoparticles in the area of fat crystallization.

关键词: emulsion     fat crystallization     phase change material     emulsion fractionation     emulsion solidification    

synthesis of flower-like nickel phyllosilicates and its application as high-performance reinforcements in epoxy

《化学科学与工程前沿(英文)》 2022年 第16卷 第10期   页码 1531-1531 doi: 10.1007/s11705-022-2241-4

Performance and emission characteristics of a diesel engine operating on different water in diesel emulsion

Seyed Saeed HOSEINI, Mohammad Amin SOBATI

《能源前沿(英文)》 2019年 第13卷 第4期   页码 636-657 doi: 10.1007/s11708-019-0646-7

摘要: The nitrogen oxide (NO ) release of diesel engines can be reduced using water in diesel emulsion fuel without any engine modification. In the present paper, different formulations of water in diesel emulsion fuels were prepared by ultrasonic irradiation. The water droplet size in the emulsion, polydisperisty index, and the stability of prepared fuel was examined, experimentally. Afterwards, the performance characteristics and exhaust emission of a single cylinder air-cooled diesel engine were investigated using different water in diesel emulsion fuels. The effect of water content (in the range of 5%–10% by volume), surfactant content (in the range of 0.5%–2% by volume), and hydrophilic-lipophilic balance (HLB) (in the range of 5–8) was examined using Box-Behnken design (BBD) as a subset of response surface methodology (RSM). Considering multi-objective optimization, the best formulation for the emulsion fuel was found to be 5% water, 2% surfactant, and HLB of 6.8. A comparison was made between the best emulsion fuel and the neat diesel fuel for engine performance and emission characteristics. A considerable decrease in the nitrogen oxide emission (–18.24%) was observed for the best emulsion fuel compared to neat diesel fuel.

关键词: water in diesel emulsion fuel     hydrophilic-lipophilic balance (HLB)     response surface methodology (RSM)     emulsion stability     engine performance     exhaust emission    

国产环氧沥青混合料固化强度增长规律研究

钱振东,王亚奇,沈家林

《中国工程科学》 2012年 第14卷 第5期   页码 90-95

摘要:

研究了环氧沥青混合料的强度形成机理,在此基础上对影响环氧沥青混合料强度的两个重要因素即混合料的容留时间、养生温度进行了研究,确定了不同温度下环氧沥青混合料的容留时间范围及强度增长规律;采用差示扫描量热法(DSC)测得环氧沥青结合料在不同升温速率下的动态DSC曲线,通过非线性回归求得固化动力学关键参数,建立环氧沥青结合料的固化反应模型。研究结果可以指导环氧沥青混合料的生产与施工,同时对铺装层开放交通时间的确定有参考意义。

关键词: 环氧沥青     强度增长     时温条件     固化反应模型    

Optimising the oil phases of aluminium hydrogel-stabilised emulsions for stable, safe and efficient vaccine adjuvant

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 973-984 doi: 10.1007/s11705-021-2123-1

摘要: To increase antibody secretion and dose sparing, squalene-in-water aluminium hydrogel (alum)-stabilised emulsions (ASEs) have been developed, which offer increased surface areas and cellular interactions for higher antigen loading and enhanced immune responses. Nevertheless, the squalene (oil) in previous attempts suffered from limited oxidation resistance, thus, safety and stability were compromised. From a clinical translational perspective, it is imperative to screen the optimal oils for enhanced emulsion adjuvants. Here, because of the varying oleic to linoleic acid ratio, soybean oil, peanut oil, and olive oil were utilised as oil phases in the preparation of aluminium hydrogel-stabilised squalene-in-water emulsions, which were then screened for their stability and immunogenicity. Additionally, the underlying mechanisms of oil phases and emulsion stability were unravelled, which showed that a higher oleic to linoleic acid ratio increased anti-oxidative capabilities but reduced the long-term storage stability owing to the relatively low zeta potential of the prepared droplets. As a result, compared with squalene-in-water ASEs, soybean-in-water ASEs exhibited comparable immune responses and enhanced stability. By optimising the oil phase of the emulsion adjuvants, this work may offer an alternative strategy for safe, stable, and effective emulsion adjuvants.

关键词: pickering emulsion     vaccine adjuvant     alum-stabilised emulsion     oleic to linoleic acid ratio     stability    

nanohybrid CNT@Ni-PS and its applications in enhancing the tribological, curing and thermal properties of epoxy

Jinian Yang, Yuxuan Xu, Chang Su, Shibin Nie, Zhenyu Li

《化学科学与工程前沿(英文)》 2021年 第15卷 第5期   页码 1281-1295 doi: 10.1007/s11705-020-2007-9

摘要: Poor interfacial adhesion and dispersity severely obstruct the continued development of carbon nanotube (CNT)-reinforced epoxy (EP) for potential applications. Herein, hierarchical CNT nanohybrids using nickel phyllosilicate (Ni-PS) as surface decorations (CNT@Ni-PS) were synthesized, and the nanocomposites derived from varied mass fractions of EP and CNT@Ni-PS were prepared. The morphological structures, tribological performances, curing behaviors and thermal properties of EP/CNT@Ni-PS nanocomposites were carefully investigated. Results show that hierarchical CNT nanohybrids with homogeneous dispersion and well-bonded interfacial adhesion in the matrix are successfully obtained, presenting significantly improved thermal and tribological properties. Moreover, analysis on cure kinetics proves the excellent promotion of CNT@Ni-PS on the non-isothermal curing process, lowering the curing energy barrier steadily.

关键词: nickel phyllosilicate     surface decoration     tribological property     curing kinetics     thermal performance    

标题 作者 时间 类型 操作

A free-standing superhydrophobic film for highly efficient removal of water from turbine oil

Fan Shu, Meng Wang, Jinbo Pang, Ping Yu

期刊论文

Molybdenum disulfide@nickel phyllosilicate hybrid for improving the flame retardancy and wear resistance of epoxy

期刊论文

Bisphenol-A epoxy resin reinforced and toughened by hyperbranched epoxy resin

ZHANG Daohong, JIA Demin, HUANG Xianbo

期刊论文

乳化炸药结构与稳定性关系的研究

汪旭光,申英锋

期刊论文

of polyaniline nanorods to simultaneously enhance the mechanical properties and wear resistance of epoxy

期刊论文

Self-extinguishing and transparent epoxy resin modified by a phosphine oxide-containing bio-based derivative

Gang Tang, Ruiqing Zhao, Dan Deng, Yadong Yang, Depeng Chen, Bing Zhang, Xinliang Liu, Xiuyu Liu

期刊论文

nanohybrid CNT@Ni-PS and its applications in enhancing the tribological, curing and thermal properties of epoxy

期刊论文

nickel phyllosilicate toward efficiently enhanced mechanical, flammable and tribological properties of epoxy

期刊论文

synthesis of flower-like nickel phyllosilicates and its application as high-performance reinforcements in epoxy

期刊论文

Importance of emulsions in crystallization—applications for fat crystallization

Sandra PETERSEN, K. CHALEEPA, Joachim ULRICH

期刊论文

synthesis of flower-like nickel phyllosilicates and its application as high-performance reinforcements in epoxy

期刊论文

Performance and emission characteristics of a diesel engine operating on different water in diesel emulsion

Seyed Saeed HOSEINI, Mohammad Amin SOBATI

期刊论文

国产环氧沥青混合料固化强度增长规律研究

钱振东,王亚奇,沈家林

期刊论文

Optimising the oil phases of aluminium hydrogel-stabilised emulsions for stable, safe and efficient vaccine adjuvant

期刊论文

nanohybrid CNT@Ni-PS and its applications in enhancing the tribological, curing and thermal properties of epoxy

Jinian Yang, Yuxuan Xu, Chang Su, Shibin Nie, Zhenyu Li

期刊论文